

DII-003-017403 Seat No. _____

M. Sc. (Sem. - IV) (CBCS) (Statistics) Examination

May / June - 2015

STAT.CST: 4003: Multivariate Analysis

Faculty Code: 003 Subject Code: 017403

		•	
Tim	ie:	$2\frac{1}{2}$ Hours]	[Total Marks: 70
Q-1	Ans	wer any seven of the following.	(14)
1	. To	test simple hypothesis versus composite hypothesis then	test can be used.
	a.	UMP – test	
	b.	LRT – test	
	c.	M.L.E	
	d.	Method of moment	
2	. Th	e parameter of symmetric multivariate normal distribution is	
	a.	$\frac{p+1}{2}+p$	
		$\frac{p+1}{2}$	
	~.	2 p	
		$\frac{p}{2}$	
	d.	$\frac{p-1}{2}$	
3		is concerned with explaining the variance covariance	e structure through linear
	co	mbination with objectives like data reduction and interpretati	ons.
	a.	Discrimination	
	b.	Classification	
		Principle component analysis	
		Sphericity test	
4.		Whishart distribution, p= We obtain distribu	tion.
		P = 0, chi-square distribution	
		P = 1, chi-square distribution	
		P = 0, normal distribution	
_		P = 1, normal distribution	
5.		$(X \cap N_p (\mu, \Sigma), \text{ define } Y = CX \text{ where } C \text{ is a non } -\text{ singular matrix } t$	hen Y follows
		$Y \sim N_p(0, \Sigma)$	
		Y ~ N _p (0,C ΣC')	
		$Y \sim N_p(\mu, \Sigma)$	
6.		$Y \sim N_p(\mu, C \Sigma C')$	
0.		which type of hypothesis we get to test LRT test?	
		Simple – simple Simple – Composite	
		Composite – Simple	
		Composite – Composite	

- 7. Which method is use to explaining the variance covariance structure through a few linear combination of the original variables?
 - a. Principal component
 - b. Discrimination
 - c. Mis-classification
 - d. Maximum likelihood test
- 8. How can we find conditional distribution for any distribution?
 - a. Conditional distribution = marginal x joint
 - b. Conditional distribution = marginal joint
 - c. Conditional distribution = marginal / joint
 - d. Conditional distribution = marginal + joint
- 9. The limiting distribution of Negative multinomial distribution when tructed at 0 follows which distribution?
 - a. Multivariate logarithmic series distribution
 - b. Multivariate normal distribution
 - c. Multinomial distribution (Singular)
 - d. Multinomial distribution (Non Singular)
- 10. If a p-component vector $Y \sim N_p(0,T)$ where T is a NSM then $Y'T^{-1}Y$ follows which distribution?
 - a. Chi square with d.f. p
 - b. Chi square with d.f. p-1
 - c. Chi square with d.f. p 2
 - d. Chi square with d.f. n

Q-2 Answer the following questions (Any Two)

(14)

- 1. Let X_i (I = 1,2,...,k) be independently distributed as $N_p(\mu_i, \Sigma_i)$. define $\overline{Y} = C\overline{X}$ then show that $\overline{Y} = N_p(\mu, C\Sigma C')$.
- 2. Explain Mahalanobis D2.
- 3. Explain Multiple and Partial correlation coefficient for MND.
- 4. Explain Two Sample Problem of Hotelling T².

Q-3 Answer the following questions

(14)

- 1. Define error of mis classification problem.
- 2. Define q sample problem

OR

Q-3 Answer the following questions

(14)

- Define following terms.

 Admissible Minimay Bule a
 - Admissible, Minimax Rule and Bayes' Rule
- 2. Obtain the maximum likelihood estimators of μ and Σ in N_p (μ , Σ).

Q - 4 Answer the following questions (Any Two)

(14)

- 1. Define residual theorem of Wishart Distribution.
- 2. Prove that if a p component vector y $\sim N_p$ (0,T) where T is a non singular matrix then Y'T'Y is distributed as χ^2_p .
- 3. Explain the following terms.
 - a. Invariant Property of T² test
 - b. One sample Problem of T2 test

- 4. Define following terms:
 - a. Average Cost
 - b. Complete Class
 - c. Minimax Rule
 - d. Bayes Rule

Q-5 Answer the following questions (Any Two)

(14)

- 1. Detail note on principal components.
- 2. Find characteristic function of normal distribution
- 3. Explain Sphericity Test.
- 4. Explain estimation of principal component.